Building Reliable Dataload Processes through
Reltio REST APlIs

Cloud-based distributed systems require different techniques from traditional
programming models to meet the higher expectations of users on commodity
cloud-based hardware. Building resilient systems requires designing applications to
cope with and recover from inevitable system failures without any data loss.

In order to have the best performance and reliability during dataloads, it’s critical to
make sure that the customer’s ETL follows the guidelines described below.

Optimized Data Model

In order to achieve the best performance of loading data into Reltio it is critical to
follow Reltio’s best practices for data modeling - e.g. make sure immutable
reference attributes, good-performing match rules.

The Durability of Data Sources

In order to make sure that there is no loss of data before loading it into Reltio, it is
critical that all objects that need to be loaded into Reltio are stored in durable
storage: disk, AWS S3, GCP GCS, Azure Blob Storage, stream-processing platforms.
An object can be marked as successfully loaded into Reltio (e.g. acknowledge an
event in a stream-processing platform) only after getting a response from Reltio
with 200 HTTP status code.

Loading Data into Reltio Through REST APlIs

Reltio offers various REST APIs to load data to Reltio. All of the REST APIs are
synchronous and may include multiple objects within the payload of a POST
request. REST API requests can be executed in parallel with the recommended
number of parallel simultaneous requests to have the optimal performance when
loading data to Reltio.

Synchronous Requests

Reltio REST APIs are synchronous. Synchronous calls must keep the network
connection open until a response is returned from the service, unlike asynchronous
calls which close the connection as soon as the request is submitted.



Connections Pool

Opening and closing connections is an expensive process so keep a pool of open
connections that get consumed and then returned to the pool rather than opening
and closing for each record.

Requests Sizes and Number of Simultaneous Requests

Each tenant and dataset loaded will exhibit different behavior with respect to
performance. Below is a chart with suggested numbers of objects per post and
thread counts based on the size of the message body and attribute count.

Size Object Size Approx. Attributes | Records Per Threads
Per Object Size POST Request
Small | OKb - 15Kb 0-300 50 - 100 15-20
Mediu |15Kb - 70Kb 300+ 30-60 10-15
m
Large |70Kb+ 300+ 10-30 5-10
NOTE:

e If the limit of the number of simultaneous requests for a tenant is reached,
Reltio may return a response with a 503 or a 429 HTTP error code, which
indicates the client must slow down requests using an exponential backoff
algorithm

e It is strongly recommended to avoid updating the same objects from
different parallel threads.

Retries
A request should be retried only if an error code (non 200 HTTP status code) is
received in the response. A retry should be performed in the following manner.
e Using the same pool of requests with the recommended number of parallel
requests.
o Itis strongly recommended that you do not create new connections to
Reltio for failed records as it will increase the number of simultaneous
requests.
e Use exponential backoff:
https: //en.wikipedia.org /wiki/Exponential backoff.
e Aretry should be done only for failed records and not for all of the records.
For example, for daily dataloads, it is not recommended to reload all data for


https://en.wikipedia.org/wiki/Exponential_backoff

that day if only 10 records had errors. Only the 10 records resulting in errors
should be retried.

Recording Failed Records

If a record failed to be loaded into Reltio even after retries, it is critical to save
those records in a file or a dead letter queue to make sure those records can be
investigated and reloaded once any issues are addressed.

It is always a good idea to record the reason for failure with the original response
details that were obtained from the platform.

Monitoring and Logging
It is critical to make sure that the integration code has the proper level of logging
and monitoring. It is useful to have real-time status through logging system or
monitoring custom metrics about the progress of the current dataload:

- how many records have been loaded

- how many records have been failed

- current operations per second

Sample Code for Loading Data to Reltio

The following is a sample code for handling HTTP response codes where it is
recommended that the client application retry the request.

Java:

https: //bitbucket.org /reltio-ondemand /util-dataload-processor/src/master/



https://bitbucket.org/reltio-ondemand/util-dataload-processor/src/master/

